B. Math. Hons. IInd year Midsemestral examination First semester 2017 Algebra III Instructor : B. Sury Maximum Marks 60

Q 1. (8 marks)

Give examples of the following:

(a) A commutative subring of $M_2(\mathbf{R})$;

(b) A nilpotent polynomial of positive degree in $\mathbf{Z}_{12}[X]$;

(c) A left ideal of a ring that is not a right ideal;

(d) Two nilpotent elements who sum is not nilpotent.

Q 2. (5+7 marks)

Let A be a commutative ring with unity.

(i) Prove that an ideal M is maximal if A/M is a field.

(ii) If P is a prime ideal such that A/P is a finite ring, then prove that P must be maximal.

Hint. Use the fact that if P is a prime ideal, then A/P is a domain.

Q 3. (5+5 marks)

(i) Determine, with proof, all the idempotents of the ring $R = C([0, 1], \mathbf{R})$ of continuous real-valued functions on [0, 1].

(ii) Let A be a commutative ring with unity. If $f = a_0 + a_1 X + \dots + a_n X^n \in A[X]$ is a unit, prove that a_n is nilpotent in A.

Hint. If $g = b_0 + b_1 X + \dots + b_m X^m$ is the inverse of f, show that $a_n^{m+1-k} b_k = 0$ for $k \le m$.

Q 4. (4+6 marks)

(i) Let R be the ring

$$\mathbf{Z}[i, j, k] = \{a + bi + cj + dk : a, b, c, d \in \mathbf{Z}\}$$

of integral quaternions. Find its group of units. (ii) Find all square roots of -1 in the ring

 $\mathbf{H} = \{a + bi + cj + dk : a, b, c, d \in \mathbf{R}\}$

of real quaternions.

Q 5. (12 marks)

(i) Find all units of the ring $\mathbf{Z}[\sqrt{-d}]$ where d > 2 is an integer.

(ii) Prove that the polynomial $X^{50} - 101101X^{13} + 110$ cannot take either of the values 33 and -33 for an integer value of X.

Hint. Apply Eisenstein's criterion to appropriate primes.

OR

(i) In a Euclidean domain, show that irreducible elements are prime. (ii) Assuming the fact that $\mathbb{Z}[\sqrt{-2}]$ is a Euclidean domain, find all solutions in integers x, y to the equation

$$x^2 + 2 = y^3$$
.

Hint for (ii). Observe that a prime p dividing y in any solution divides $(x + \sqrt{-2})(x - \sqrt{-2})$ but divides neither factor.

Q 6. (10 marks)

Consider the ring homomorphism $\phi : \mathbf{C}[X, Y] \to \mathbf{C}[Z]$ defined by $X \mapsto Z^2, Y \mapsto Z^3$. Prove that the kernel of ϕ is the principal ideal generated by $X^3 - Y^2$.

OR

Consider a ring homomorphism T from \mathbf{R} to itself. Show that if T is not the zero map, T is identity on \mathbf{Q} and that $T(x) \ge T(y)$ if $x \ge y$. Deduce that T is continuous.